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Abstract: If the modeling approach for strain localization with softening does not contain a material length-scale
parameter, the numerical simulation suffers from the excessive mesh dependence. This paper presented the
extended finite element (XFEM) method combined with new integral type nonlocal model for numerical
simulation of strain localization with softening. The XFEM method was employed for simulation of high strain
gradient in the localization band. The governing differential equations were regularized by nonlocal continuum
theory, including the material length-scale parameter. For nonlocal plasticity, element size has a critical effect
on the solution. Sufficiently refined meshes are required for an accurate solution without mesh dependency.
It was shown that an extended finite element method can be applied to the problem to decrease the required
mesh density close to the localization band. A new method based on the local bifurcation theory was proposed
for the initiation and growth criterion of the strain localization interface. When using this method, the softening
zone initiation locus did not need to be known in advance. Finally, several numerical examples were used to
demonstrate the efficiency of the mixed XFEM–integral type nonlocal model in shear band localization modeling
without mesh dependency.
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INTRODUCTION The integral-type nonlocal model is based on the

Strain  localization  is  of  considerable interest The first application of the integral-type nonlocal model
because  of  its  importance  in  the  prediction  of  failure into plasticity was made by Erigena [8, 9]. However,
and residual bearing capacity for many engineering Erigena’s formulation cannot be used as a localization
structures.  It  was  mentioned  in the literature that limiter because the averaging operator was applied to the
classical continuum mechanics cannot correctly predict total strain tensor which could cause spurious instabilities
strain localization and softening behavior. When (zero energy modes) [3]. Pijaudier-Cabot and Bazant [10]
localization or material softening occurs, the governing and Bazant and Lin [11] applied the nonlocal operator
static equations lose elasticity or the governing dynamic only to those parameters which control the softening
equations lose hyperbolicity (onset of bifurcation) [1, 2]. process. Finite element implementation of nonlocal
Therefore, the boundary value problem becomes plasticity was presented by Stromberg and Ristinmaa [12],
mathematically ill-posed, which results in mesh Brunig et al. [13], Maier [14, 15] and Tejchman [16]. Jirasek
dependency. This inefficiency is due to the fact that [17] presented an overview of the integral-type nonlocal
classical continuum mechanics has no material length model  for  damage and fracture, Bazant and Jirasek [18]
scale  parameter  [3].  As  a  result, by refining the mesh, did for plasticity and damage and Jirasek and Rolshoven
the plastic strain is localized in a narrower region. To [3] did for plasticity. In the present paper, a new relation
regularize the boundary value problem micro-polar models is proposed to calculate the stress rate based on the
[4], higher-order gradient models [5], visco-plasticity [6] integral-type nonlocal model. This relation depends on
and integral-type nonlocal plasticity models [7] are the local plastic strain rate and integral averaging of the
commonly used. local plastic strain rate.

replacement of a certain variable by integral averaging.
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The mathematical foundation of the XFEM was discussed by Melenk and Babuska [19]. The first application of
XFEM to crack growth problems was done by Belytschko and Black [20]. The advantage of this technique is its
independency of the crack geometry on the mesh. Fries and Belytschko [21] provided an overview of XFEM applications.
This numerical technique has been used  to  simulate  shear  bands  and  strain  localization [22-27]. In the context of the
nonlocal model, the mesh must be sufficiently refined near the high strain gradient region to resolve mesh dependency.
Adaptive mesh refinement can be used to overcome this, however, adaptivily may produce stress oscillations cause by
the  poor  ability  of  approximation  functions  to capture the non-smooth  pattern  of  strain  near  the softening zone
[22, 28]. The XFEM method is an alternative that can be applied to decrease the required mesh density close to the shear
band. This numerical strategy allows modeling of the mesh-independent approximation of the non-smooth solutions
using enrichment functions which are close to the exact localization mode. In addition, the computational effort is
reduced compared to remising methods.

Strain localization starts when the ellipticity conditions of the static equation or the hyperbolicity of the  dynamic
equation  are  lost  (onset  of  bifurcation) [11, 29]. If the constitutive tensor is symmetric, this condition is equivalent
to zero or the negative determinant of the acoustic tensor. Therefore, the singularity of the acoustic tensor was
considered as the onset condition of strain localization (local bifurcation criterion) [30-34]. When using the local
bifurcation theory and XFEM, the softening zone initiation locus does not need to be known in advance. Strain
localization begins at the first point in which the local criterion of bifurcation is satisfied (singularity of acoustic tensor).
Moreover, the strain localization interface progresses are obtained independently from the mesh. With continued
loading, local criterion of bifurcation is satisfied in more points and thereafter strain localization grows inside the body.

In the present paper, use of XFEM combined with an integral-type nonlocal continuum model is proposed for the
simulation of the strain localization in elasto-plastic solids. The XFEM formulation is presented in the framework of a
generalized continuum model based on the nonlocal  continuum  theory,  including the material length-scale parameter.
The standard FE approximation is enriched by employing additional terms based on the hyperbolic tangent function. This
function is continuous and  differentiable  and  can  model high strain gradient. The interfaces of the localization band
are represented independently  of  the  element boundaries by XFEM. Local bifurcation is considered as a criterion for
the initiation and growth of the strain localization interface. Finally, several numerical examples are used to demonstrate
the efficiency of the mixed XFEM–integral type nonlocal model in shear band localization modeling without mesh
dependency.

XFEM Formulation of Elasto-Plastic Solids: The governing equation in an updated Lagrangian framework is a linear
momentum balance equation.

(1)

where  is the stress, b refers to the body force and  is the density. The Dirichlet boundary condition is u =  on = .u

The Neumann boundary conditions is t = n on = .t
The  spatial  discretization  involving  the  variables  u  is  achieved  by  suitable  shape  functions.  Therefore, the

finite element polynomial displacement field is enriched with regular Heaviside function which models the high
displacement gradient in the localization band. The approximation of displacement (u) can be expressed in the following
form:

(2)

where n  denotes the number of element nodes, N  the standard finite element shape function associated with nodeu u
nod i

i,  the standard nodal displacement,  the additional degrees of freedom (DOF) associated with node i. In the abovei i

relation,  denotes the appropriate enrichment function and (x) is the distance from the strain localization interface.(x)

R  is the ramp function which resolves difficulties in blending elements [21].(x)
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Fig. 1: The smoothed hyperbolic tangent function and its in which
derivative

(3) (8)

where n  is the number of enriched nodes of the element.ear

This numerical technique improves the description of the
displacement field inside the localized zone by adding the
special enrichment functions which can model high
gradient of displacement field. These functions and their (9)
gradients must be similar to the profile of displacement
and strain fields. In this study, the hyperbolic tangent is
employed to describe the corresponding profiles, as The governing equations (7) are discredited in the
shown in Fig. 1. This function is defined as: time domain by means of the Newmark’s scheme. The

 = tanh(2 (x)/ ) (4) displacement field (u, a) as:(x)

where  is the parameter which controls width of the shear
band. By selecting several values of , one can construct
a series of enrichment functions describing the
displacement profile near the strain localization interface.
By substituting equation (2) in to strain rate definition,
strain matrix can be defined as:

(5)

in which (10)

where , and    the   Newmark   parameters.

(6)

To  obtain  the  weak  form of the governing
equations, Galerkin’s procedure is used. The test
functions u(x, t) which has the same form as u is
multiplied by equations (1) and integrated over the
domain . Using the Divergence theorem leads to the
following equation as:

(7)

generalized Newmark GN22 method is employed for the

1 2

For  unconditional   stability   of   the   numerical
procedure, it is required that .5 and  .5. It2 1

must be noted that equation 10 is obtained at the known
time t i.e. ,  and  are the known values of
displacement field. Substituting relation 10 into the space-
discrete equation 7, the following nonlinear equation can
be achieved.
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In this paper, equation 17 is proposed to calculate the
(11) effective stress vector rate from the local and nonlocal

In above equation,  denotes the vector of known
values at time t and K is the tangential stiffness matrix. (17)

(12) parameter. Using equation 17, the stress rate at a certain

equal to local plastic strain; thus, it can be concluded that

(13) strain becomes non-smooth, the difference between

where  D  is  the  appropriate   constitutive  matrix. The differences between the two formulations are revealed.
non-linear coupled equation system is linearised in a The formulation presented by Bazant and Lin [11] is a
standard way thus yielding the linear algebraic equation special case of equation 17 where m is considered to be 1;
system 11 which can be solved using an appropriate therefore, different patterns for the load-displacement
approach, such as the Newton-Raphson procedure. curve can be obtained by changing m. This allows

The Mixed XFEM - Integral Type Nonlocal Formulation: proposed stress-strain relation uses a combination of
Nonlocal continuum theory uses integral averaging of the local and nonlocal plastic strains, this formulation acts as
variable around its neighborhood, instead of a local a localization limiter [3]. The value of mE/H in which E
definition. For example, nonlocal averaging of plastic denotes the elastic modulus should remain constant
strain tensor ( ) at location x may be defined by the during loading to prevent numerical locking. Thus, the
local plastic strain tensor ( ). model describes the complete loss of material resistance

(14) Since the dissipative energy function is defined in

where V denotes volume of the body, ’(x, ) is suitable associated flow rule can be used [3]. As a result, local
weighting function. In this paper Gaussian distribution plastic strain rate is obtained by equation 18.
function is used as a weighting function.

(15) where denotes the plastic multiplier and F the yield

in which  is a scalar which is related to material length which  is the hardening-softening parameter. Applying
scale parameter. For numerical finite element computation, the consistency condition to the yield function,  can be
the integral definition 14 can be approximated by calculated as:
summation relation. Nonlocal plastic strain tensor can be
written as follow:

(16)

where k denotes gauss points which are closer to point x equal to –( F/ )( / ). By substituting equations 19 in
than 2 . The value of ’(x, ) for gauss points with greater to 18, vector form of local plastic strain rate is obtained as
distance than 2  is negligible. a function of total strain vector rate.

plastic strain vector rate.

where D is linear elastic matrix and m is a constante

point is related to the plastic strain rate in its
neighborhood. If the local plastic strain distribution in a
body is smooth, nonlocal plastic strain is approximately

the proposed formulation is approximately identical to the
local formulation. When the distribution of local plastic

nonlocal plastic strain and local definition increases and

simulation of a wider range of materials. Since the

without artificial locking effects.

local space, as in classic continuum mechanics, the

(18)

function which can be defined as: F( , ) = f( ) –  = 0 in

(19)

where H denotes the plastic tangential modulus and is
p
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(20)

By using equations (16), (17) and (20), stress rate at gauss point k can be defined by:

(21)

where I am identity matrix and l denotes gauss points which are closer to gauss point k than 2 . The tangent stiffness
matrix (equation 13) for mixed XFEM-integral type nonlocal plasticity for a specified element can be modified using
numerical integration and equation 21.

(22)

where |J| is determinant of Jacobian matrix and W  denotes weight coefficient of the gaussian quadrature. If the secondk

and third terms in equation 22 are ignored, the formulation becomes equivalent to local theory. The DOF of  one  element
may  become  related  to the DOF of a non-neighboring element because of the third term of equation 22. In conclusion,
the nonzero components of the  tangent  stiffness  matrix  increase.  In this situation, the tangent stiffness matrix is not
symmetrical because '(x , x ) '(x , x ).k l l k

Determination of Strain Localization Interface: By applying enrichment functions to the formulation, additional DOF
must be assigned to the nodes. At the beginning of the analysis, the additional DOF are inactive. For this reason a
criterion must be defined for the activation of additional DOF. This study proposed the local bifurcation criterion to
locate strain localization interface. In the case of a symmetric constitutive model, this criterion coincides with the
singularity of the acoustic tensor. Acoustic tensor can be defined as:

A  = C n  n (23)ij ikjl k l
ep

where n is a unit vector and C  denotes local elastoplastic constitutive tensor.ep
ikjl

(24)

If there is a direction in which the determinant of the acoustic tensor becomes zero or negative, strain localization
probably starts and XFEM must be used to approximate  the  displacement  field.  At  each  Gauss point, then, a direction
must be found in which the determinant of the acoustic tensor has the lowest value. One independent variable is
sufficient to describe unit vector n in two-dimensional space. As a result, the determinant of the acoustic tensor is a
function of one variable  and  its lowest value can easily be calculated. This approach allows us to identify points where
strain localization is likely to occur.

In order to perform the numerical algorithm, it is assumed that the interface, i.e. the centerline of the localization zone
and the Gauss points which have a negative determinant of the acoustic tensor are known at time t (Fig. 2). Moreover,
the vector V corresponding to the minimum determinant of the acoustic tensor at the last point of the interface, i.e. L, is
known at time t.
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Fig. 2: Computational algorithm for the localization evolution of the shear band zone (Fig. 3b), the number of
interface growth at step n Gauss quadrature points for an element may differ before

The vector V’ is plotted from L to the Gauss point stresses can be determined at the standard FE Gauss
which has a negative determinant of the acoustic tensor, points of an element. To obtain these values at the Gauss
i.e.  G.  Then  the  angle  between  V and V’ is obtained. quadrature points of sub-triangles, a simple interpolation
The next point for the centerline of the localization zone is on a support domain for each triangular Gauss point
a Gauss point whose corresponding vector V’ has a consisting of the three nearest standard FE Gauss points
minimum angle with V. Once the new interface is detected, was used. The required stress value can be determined
additional  DOF  are  activated  at  every  nodal point using a simple interpolation.
whose support has an intersection with the enriched zone.
If  convergence  is obtained at the end of the increment, One Dimensional Tension Bar: In the first example, the
the evolution of shear band is carried out to obtain the efficiency of the proposed integral type nonlocal
new interface for the next loading step. This technique is plasticity  was  investigated.  The local and nonlocal
simple and has been employed in the examples. To avoid strain-softening plasticity were used with material
doubling back on the original path, the angle between the parameters pertinent to the von-Mises yield criterion.
pieces  of  strain  localization interface  must be less than Constitutive model parameters and boundary condition
90 degrees. are shown in Fig. 4. Weak zone was considered in the

Numerical Simulation: In order to demonstrate a part of was assumed be equal to 99 percent of the initial yield
the wide range of problems that can be solved by the stress in other parts of the bar. As a result, the strain
present approach, we have illustrated the effective localization initiated from the center as shown in Fig. 4 by
performance  of  XFEM  technique  using  the  integral the  shaded  area.  The  parameter  was set to 1.4cm and
type  nonlocal  continuum  in strain localization analysis. m was set to 2 to obtain the band width equal to 3.5 cm.
A computer program has been developed to investigate The loading was applied incrementally with a
the computational aspects of the XFEM model in a higher displacement control method. The bar was divided into 7,
order continuum model. Several numerical simulations, 15 and 31 elements to examine the mesh dependency of
including one dimensional tension bar, a strip in tension local and integral type nonlocal plasticity.
and the vertical slope problem have been presented to The stress-equilibrium condition implies that the
illustrate the performance and efficiency of the proposed stress must be constant across the entire bar. The stress
formulation. The finite element mesh employed in all in the bar initially increases linearly with applied
simulations was eight-noded rectangular and six-noded displacement . After the stress reaches its peak, strain
triangular plane strain elements with nine and seven localization is initiated from the bar center. In the
integration points, respectively. The analysis starts with framework of local plasticity, the bar is in a loading state
the  standard  FE  model  with no enrichment functions. inside the central element and an unloading state outside
The enrichment function is then implemented into the it. Due to softening inside the band, the stress in the bar
standard shape functions by tracing the evolution of decreases. The softening zone width becomes narrower as
shear band zone. The parameter , which is defined the the mesh is refined, so the global load–displacement
width  of  enrichment  zone,  is set to  in all analyzes due curve becomes mesh sensitive. The plastic strain
to  the fact  that  the  shear  band  thickness  is  about . distributions along the bar and load–displacement curve
All elements closer to the strain localization interface than are  shown  in  Fig. 5 and 6 respectively. As seen, snap

 are enriched by the hyperbolic tangent function. back  phenomenon  occurs  in  the  medium and fine mesh.

For integration purposes, a decomposition of the
elements into sub-elements that align with the interface is
standard in the XFEM [21]. In the case of a rectangular
element, the elements located on the interface were
partitioned  using  triangular  sub-elements (Fig. 3a) and
24 Gauss quadrature points were used for the elements
cut by the shear band interface. For standard FE elements,
a set of 3×3 Gauss points were used for numerical
integration. If an interface surface was added during the

and after each increment. In this case, the value of the

central part of the bar. The initial yield stress of this zone



7 elements
15 elements
31 elements

0 0.02 0.04 0.06 0.08 0.10

0.1

0.2

0.3

0.4 7 elements

x(m)

ε % Local plasticityp

7 elements
15 elements
31 elements

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

1.2

∆δ/

σ/σy

%

Localplasticity

L

Middle-East J. Sci. Res., 16 (1): 73-87, 2013

79

Fig. 3: Modeling of localization interface in XFEM; (a)
The sub-triangles associated with elements cut by Fig. 7: Non-local Plastic strain distributions from the
the interface at step n, (b) the sub-triangles proposed nonlocal plasticity
obtained by partitioning procedure at step n + 1

Fig. 4: One-dimensional tension bar (Constitutive model
parameters and boundary condition)

Fig. 5: Plastic strain distribution from the local plasticity loading state are determined by  which is a function of

Fig. 6: Load–displacement responses from the local area of the strip was taken as the weak zone, as shown in
plasticity Fig.  9.  If  the localization condition happens, this part will

Fig. 8: Load–displacement responses from the proposed
nonlocal plasticity

As shown in Fig. 7, by using the proposed integral type
nonlocal plasticity model, the bandwidth and nonlocal
plastic strain distribution remain almost identical for
different meshes and the load–displacement responses
display very slight differences in the three meshes (Fig. 8).
In the proposed nonlocal plasticity, when the mesh is
refined, more elements are involved in defining a plastic
zone of constant size. The range of elements that are in a

material length scale parameter.

Plane Strain Strip in Tension: In the second example,
simulation  was  done  in  the  frame  work  of  mixed
XFEM-integral type nonlocal plasticity with strain
softening. Geometry, boundary condition and material
parameters are shown in Fig. 9. The strip was restrained at
the bottom edge in the vertical direction and a uniform
vertical displacement was imposed on the upper nodes
while  the  other  two  degrees-of-freedom  were  set free.
In order to avoid the homogeneous solution, the shaded
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Fig. 9: The  plane  strain  strip  in  tension;  (a)  The geometry, boundary conditions and material properties, (b) the
stress-strain curve

Fig. 10: The evolution of strain localization interface , negative determinant of acoustic tensor contour and vectors
corresponding to the minimum determinant of acoustic tensor for the strip in tension; (a) =.165cm (b)

=.169cm (c) =.172cm

be the first region that triggers localization. The von- model, 430 elements were used while in the adaptive FEM
Mises yield criterion with a bilinear stress–strain- analysis, 1166 elements were used in simulation.
softening curve was used. The parameter  was set to 1cm Therefore, the XFEM method is a numerical method that
and m was set to .8 to obtain the shear band thickness can be applied to decrease the required mesh density
equal to 1.3 cm. close to the shear band. In Fig. 13, the strip reaction

Growth of the strain localization interface in each step versus prescribed displacement is shown for the XFEM
was determined by local bifurcation criterion. Fig. 10 technique using the hyperbolic tangent function and an
presents the evolution of strain localization interface adaptive FEM analysis. There is a good agreement
together with the enriched nodes, negative determinant of between two different techniques. This example clearly
the acoustic tensor contour and vectors corresponding to presents the efficiency of the mixed XFEM-integral type
the minimum determinant of acoustic tensor at three nonlocal model even with a uniform coarse mesh.
different steps. At the end of simulation, the total The change of inclination ( ) and thickness (t) of the
numbers of 77 additional DOF have been added to the shear band with increases of m and  are shown in Fig. 14
system. Fig. 11 presents the deformed configuration for and 15. The thickness of the shear band increased while
different deformations, i.e. =.4, .8 and 1.2 cm. In Fig. 12, inclination of the shear band decreased as m and
the nonlocal effective plastic strain contours are increased. Moreover, the maximum value of the nonlocal
presented for the mixed XFEM-integral type nonlocal effective  plastic  strain  decreased  with  the  increase of
analysis at three mesh movements. It can be observed m and . Strip reaction versus prescribed displacement is
that this  technique  gives  a  clear  picture  of the failure. shown for m = 0.6, 1, 1.5, 3 and  =0.6, 1, 1.5, 3 in Fig. 16.
In order to illustrate the efficiency and accuracy of the The effect of m and  can be observed in the
proposed algorithm, the mixed XFEM-integral type force–displacement curve. Up to the peak, all curves
nonlocal analysis were compared with an adaptive FEM coincide.  Obviously,  the nonlocal term first influenced
simulation based on the Cosserat theory reported in the results when localization occurred. Thereafter, the
reference [27]. In the mixed XFEM-integral type nonlocal amount  of  softening  depended  on the value of m and .
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Fig. 11: The deformed mesh for the strip in tension at different deformations; (a) =.4cm (b) =.8cm (c) =1.2cm

Fig. 12: The nonlocal effective plastic strain contours for the strip in tension at different deformations; (a) =.4cm (b)
=.8cm (c) =1.2cm

Fig. 13: The variation of the strip reaction with prescribed displacement; a comparison between the adaptive FEM and
mixed XFEM-nonlocal methods

Fig. 14: Inclination and thickness of the shear band for different value of m a) m=0.6 b) m=1.5 c) m=3
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Fig. 15: Inclination and thickness of the shear band for different value of  a) =.6cm b) =1.5cm c) =3cm

Fig. 16: The variation of the strip reaction with prescribed displacement; (a) the effect of  (b) the effect of m

Fig. 17: The plane strain strip in tension; The geometry, and 20 present the deformed configuration and Fig. 19 and
boundary conditions and material properties 21 present the nonlocal effective plastic strain contours

Higher values of m resulted in less softening. Residual results for coarse mesh are different than for other mesh
reaction force increased with increasing of m and did not results in the nonlocal formulation. In the proposed
change with increasing of . Thus, different load- approach, good agreement can be observed between the
displacement curves can be obtained by changing m and three mesh sizes; therefore, the XFEM can be applied to

. the problem to decrease the required mesh density close
to the of the localization band (Fig. 20 and 21). These

Comparison of the Nonlocal and Mixed XFEM-Nonlocal figures confirm that mixed XFEM-nonlocal technique
Model: In this example, the performance of the nonlocal gives good prediction of localization even for the coarse
formulation and mixed nonlocal-XFEM formulation were mesh.
compared. The geometry, boundary conditions and In the case of coarse mesh size, some amount of
material parameters are shown in Fig. 17. The strip was plastic  strain  was  created  in  the  near  top  right corner
restrained at the bottom edge in the vertical and horizontal of  the  strip  in  nonlocal  analysis  and  plastic  strain was

direction and a uniform vertical displacement was imposed
on the upper nodes. The stress–strain curve as for the
previous  example  was considered. The shaded area in
Fig. 17 represents the weak inclusion. The weak inclusion
was introduced to trigger the localization. The parameter

 was set to 1cm and m was set to 1.5 to obtain the shear
band thickness equal to 1.3 cm. In order to show the
capability of the nonlocal extension with XFEM, numerical
results obtained using different meshes are presented.
The meshes consisted of 96, 384 and 651 four-node.

The results of the nonlocal and mixed XFEM-
nonlocal  formulation  are  shown  in  Fig.  18-21.  Fig. 18

for both formulations. As seen in Fig. 18 and 19, the
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Fig. 18: The deformed mesh from nonlocal model; a) coarse mesh b)medium mesh c) fine mesh

Fig. 19: The effective plastic strain contour, inclination and thickness of the shear band from nonlocal model; a) coarse
mesh b)medium mesh c) fine mesh

Fig. 20: The deformed mesh from mixed XFEM-nonlocal model; a) coarse mesh b)medium mesh c) fine mesh

Fig. 21: The effective plastic strain contour, inclination and thickness of the shear band from mixed XFEM-nonlocal
model; a) coarse mesh b)medium mesh c) fine mesh



Middle-East J. Sci. Res., 16 (1): 73-87, 2013

84

Fig. 22: Elastoplastic softening material, geometry and boundary conditions for a vertical slope

Fig. 23: The strain localization interface and negative determinant of acoustic tensor contour for the vertical cut at
=0.5cm; (a) triangular ‘bad mesh’ (b) triangular ‘good mesh’ (c) quadrilateral ‘uniform mesh’

Fig. 24: The deformed mesh for the vertical cut at =50cm; (a) triangular ‘bad mesh’ (b) triangular ‘good mesh’ (c)
quadrilateral ‘uniform mesh’

Fig. 25: The nonlocal effective plastic strain contours for the vertical cut at =50cm; (a) triangular ‘bad mesh’ (b)
triangular ‘good mesh’ (c) quadrilateral ‘uniform mesh’

attracted by the boundary. Therefore, failure pattern was meshes i.e. the width and inclination of the shear band are
not predicted correctly by nonlocal formulation. In the independent of the element size.
mixed XFEM-nonlocal analysis, gradient of displacement
and plastic strain on the localization interface was greater Vertical Slope Problem: The next example is of a vertical
than other points because of the enrichment function. slope with a rigid footing resting on its crest. The
Therefore, mixed XFEM-nonlocal technique gives good parameters of constitutive model and boundary
prediction of localization even for the coarse mesh. conditions are shown in Fig. 22. The rigid footings have

Thickness and inclination of the shear band for three been  assumed  to  be  elastic,  with  an  elastic  modulus
different meshes are shown in Fig. 19 and 21. As seen, 100 times higher than that of the soil. The vertical slope
there is a good agreement between the results for different was  analyzed  for  three  meshes;  triangular   ‘bad  mesh’,
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Fig. 26: The variation of the vertical slope reaction with simulation   of  strain  localization. It was shown that the
prescribed displacement for different meshes proposed computational algorithm is able to accurately

triangular ‘good mesh’ and quadrilateral ‘uniform mesh’. bifurcation criterion and XFEM without mesh dependency
This  example  was  chosen  to  show  that the mixed problems. The effect of the internal length parameter on
XFEM-integral type nonlocal model can give good results the thickness and inclination of the shear band was
even  with  bad  mesh  and  different  mesh  alignments. investigated. It was shown that the nonlocal model
The present problems have been solved with preserved the well-posedness of the governing equations
displacement control by increasing the footing settlement in the post-localization regime and prevented pathological
in an incremental manner.  and m were taken equal to 1m mesh sensitivity of the numerical results  if  the  size  of
and 1.5 respectively. The strain localization interfaces the element was smaller than /2. The mixed XFEM-
together with the enriched nodes and negative nonlocal model guaranteed mesh independence even if
determinant of acoustic tensor contours at =0.5cm are the size of the elements was larger than /2. In the other
shown in Fig. 23. In Fig. 24 and 25, the deformed mesh words, coarser mesh can be used for XFEM combined
configurations and the nonlocal effective plastic strain with a nonlocal model than when using only a nonlocal
contours are presented at =50cm. Clearly, the finite model. The computational effort required for the mixed
width of the localization band and its independency of the XFEM-nonlocal model was less than for the nonlocal
finite element size can be observed in these Figs. Fig. 26 formulation because coarser mesh can be used in
shows the load deflection curves for three different simulation. For the mixed XFEM-nonlocal model, the
meshes.  The  results display that the reaction become width and inclination of the shear band was obtained
close between these three meshes. independently of element size. Mesh alignment was also

CONCLUSION invariant to the influence of mesh alignment.
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